Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF

نویسندگان

  • Xusheng Wang
  • Haiyan Chen
  • Ruiyun Tian
  • Yiling Zhang
  • Marina S. Drutskaya
  • Chengmei Wang
  • Jianfeng Ge
  • Zhimeng Fan
  • Deqiang Kong
  • Xiaoxiao Wang
  • Ting Cai
  • Ying Zhou
  • Jingwen Wang
  • Jinmei Wang
  • Shan Wang
  • Zhihai Qin
  • Huanhuan Jia
  • Yue Wu
  • Jia Liu
  • Sergei A. Nedospasov
  • Edward E. Tredget
  • Mei Lin
  • Jianjun Liu
  • Yuyang Jiang
  • Yaojiong Wu
چکیده

Skin stem cells can regenerate epidermal appendages; however, hair follicles (HF) lost as a result of injury are barely regenerated. Here we show that macrophages in wounds activate HF stem cells, leading to telogen-anagen transition (TAT) around the wound and de novo HF regeneration, mostly through TNF signalling. Both TNF knockout and overexpression attenuate HF neogenesis in wounds, suggesting dose-dependent induction of HF neogenesis by TNF, which is consistent with TNF-induced AKT signalling in epidermal stem cells in vitro. TNF-induced β-catenin accumulation is dependent on AKT but not Wnt signalling. Inhibition of PI3K/AKT blocks depilation-induced HF TAT. Notably, Pten loss in Lgr5+ HF stem cells results in HF TAT independent of injury and promotes HF neogenesis after wounding. Thus, our results suggest that macrophage-TNF-induced AKT/β-catenin signalling in Lgr5+ HF stem cells has a crucial role in promoting HF cycling and neogenesis after wounding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Re-activation of Wnt/β-catenin Signaling Pathway in Hair Follicle Stem Cells in Treatment of Androgenetic Alopecia

Hair loss is a common hair disorder in human population. It affects quality of life and there are ongoing attempts to find permanent treatment for this condition. But, today there is no completely safe and protective treatment for all. Hair follicle stem cells are alive, but quiescence in androgenetic alopecia and are potentially active and can proliferate and differentiate, then regenerate hai...

متن کامل

Compartmentalized Epidermal Activation of β-Catenin Differentially Affects Lineage Reprogramming and Underlies Tumor Heterogeneity.

Wnt/β-catenin activation in adult epidermis can induce new hair follicle formation and tumor development. We used lineage tracing to uncover the relative contribution of different stem cell populations. LGR6(+) and LRIG1(+) stem cells contributed to ectopic hair follicles formed in the sebaceous gland upon β-catenin activation, whereas LGR5(+) cells did not. Lgr6, but not Lrig1 or Lgr5, was exp...

متن کامل

Embryonic attenuated Wnt/β-catenin signaling defines niche location and long-term stem cell fate in hair follicle.

Long-term adult stem cells sustain tissue regeneration throughout the lifetime of an organism. They were hypothesized to originate from embryonic progenitor cells that acquire long-term self-renewal ability and multipotency at the end of organogenesis. The process through which this is achieved often remains unclear. Here, we discovered that long-term hair follicle stem cells arise from embryon...

متن کامل

CCN2 modulates hair follicle cycling in mice

It is critical to understand how stem cell activity is regulated during regeneration. Hair follicles constitute an important model for organ regeneration because, throughout adult life, they undergo cyclical regeneration. Hair follicle stem cells-epithelial cells located in the follicle bulge-are activated by periodic β-catenin activity, which is regulated not only by epithelial-derived Wnt, bu...

متن کامل

R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling.

The Wnt/β-catenin signaling system plays essential roles in embryonic development and in the self-renewal and maintenance of adult stem cells. R-spondins (RSPOs) are a group of secreted proteins that enhance Wnt/β-catenin signaling and have pleiotropic functions in development and stem cell growth. LGR5, an orphan receptor of the G protein-coupled receptor (GPCR) superfamily, is specifically ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017